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ABSTRACT 

The natural  correspondence between bounded planar quadrature 
domains, in the terminology of Aharonov-Shapiro, and certain square 

matrices with a distinguished cyclic vector is further exploited. Two dif- 

ferent cubature formulas on quadrature domains, tha t  is the computation 
of the integral of a real polynomial, are presented. The minimal defin- 
ing polynomial of a quadrature domain is decomposed uniquely into a 
linear combination of moduli squares of complex polynomials. The ge- 
ometry of a canonical rational embedding of a quadrature domain into 
the projective complement of a real affine ball is also investigated. Ex- 
plicit computations on order-two quadrature domains illustrate the main 

results. 
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Introduct ion  

This note is a continuation of [P1] and it is devoted to some constructive aspects 

of the relation between quadrature domains and their linear data. We assume 

that the defining polynomial of a bounded quadrature domain is given and we try 

to find explicit formulas for the real moments of the domain and other naturally 

associated objects. Our approach is based on the observation that a quadrature 

domain is the level set of the norm of the resolvent of a square matrix, localized 

at a specific cyclic vector. 

The first set of formulas we propose starts from the equation of a quadrature 

domain, it passes through an inversion of a Hankel matrix (formula (11) in text) 

and requires a logarithm of formal series (formula (12)) in order to compute all 

the moments of the domain. 

The second method of computing the same moments starts again from the 

equation of the quadrature domain, then it identifies from this equation a square 

matrix with a cyclic vector, called in the sequel the linear data of the domain, and 

finally exploits the Helton-Howe trace formula for seminormal operators in order 

to evaluate the moments. In particular, this method gives a non-commutative 

cubature formula on quadrature domains (formula (15) in text) which is exact 

on all n-polyharmonic polynomials, for n specified. An error formula for this 

cubature is then obtained. 

The rest of the paper deals with some specific properties of the resolvent of 

the linear data of a quadrature domain. The minimal polynomial which defines 

a quadrature domain of order d is canonically decomposed into the modulus 

square of the minimal polynomial of the associated matrix minus exactly d moduli 

squares of complex polynomials, of exact degrees d - 1, d - 2 , . . . ,  1, 0. Thus a 

natural set of parameters of a quadrature domain is exhibited. 

A canonical rational embedding of the quadrature domain f~ of order d in the 

exterior of the unit ball of C d is obtained. Then we prove that the multivalued 

Schwarz reflection in the boundary of ~ maps the exterior of f~ into ~,  and in this 

transformation the boundary covers the boundary exactly once via the identity 

map. A uniqueness result for this embedding of a quadrature domain in the 

exterior of a multidimensional ball is also established. As a consequence certain 

rational maps from C into C d which commute with the reflections in the unit 

balls of the two affine spaces are classified. 

A few simple examples of the interplay between planar domains and pairs of 

matrices with a cyclic vector end the paper. 
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1. P r e l i m i n a r i e s  

We recall from [P1] a few formulas which relate a quadrature domain to a matrix 

with a cyclic vector. Although these formulas have been motivated by the study 

of the L-problem of moments in the real plane, we do not make any precise 

reference to this relationship; see for details [P2]. 

Let ~2 be a bounded planar domain and let d A  stand for the area measure in C. 

The coordinate in the complex plane C will be denoted by z. The domain ~ is 

called, following the terminology of Aharonov and Shapiro [AS], a q u a d r a t u r e  

d o m a i n  if there exists a distribution u with finite support in ~t such that  

a f d A  = u ( f ) ,  

for every integrable analytic function f in ~. Quadrature domains tend to be 

very rigid; they are remarkable in many respects as it is amply illustrated by the 

recent monograph [Sh]. 
The o r d e r  of the quadrature domain ~ is the cardinality of the support of 

u, counting multiplicities. To be more specific, there are points Aj C ~ and 

constants 7jk,0 < k < m ( j )  - 1, 1 _< j _< m, with the property that 

m re(j)-1 

j = l  k=O 

where u and f are as above. To make the above decomposition optimal, we 
assume that  ")'j,m(j)--i ~ 0 for all j, 1 < j < m. The order d -- d(~) of gt is then 

by definition 
m 

d = Z re(j). 
j= l  

The quadrature domains of order one are precisely the disks; see [Sh]. In 

general the equation of the boundary of a quadrature domain ~ of order d is 

given, up to a finite set, by the equation Q(z,-2)  = O, where 

d 
(1) Q(z,5) = ~ aktzk-2 l 

k,l=O 
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is a monic self-adjoint irreducible polynomial; by self-adjoint we mean ak~ = a,k 

and by monic we mean add = 1. For details we refer to [AS], [G1]. 

A quadrature domain fl is characterized by the existence of a meromorphic 

function S(z)  in Q, continuous on ~ \ { h i , . . . ,  Am}, with the property 

(2) S ( z ) = - 2  f o r z � 9  

The function S is called t h e  Schwarz  func t ion  of fl; see [D] and [Sh]. The 

poles of S(z)  coincide, including the multiplicities, with the nodes Aj, 1 < j _< m, 

of the quadrature identity. Let us define the polynomial: 

m 

P ( z )  = H(z- 
j = l  

so that P ( z ) S ( z )  is a holomorphic function in f2. 

The following facts were established in [G1]. 

THEOREM 1.1 ([G1], Section 6): Let ~ be a quadrature domain. Then, with the 

above notation, we have 

(3) 

and 

d-1  

P(z)  = z d + E % dzj' 
j=O 

d j 
1 m re(k)-1 Ibm ~-~j=o ~ d- l z  S(Z) + A(z) ,  

(4) ~ k:lE Et:0 (z - Ak) t+l - ad,d-1 -- P(z )  = 

where A(z)  is an analytic function in f~. 

An explanation of these formulas will become available later in this and the 

next section. Roughly speaking, Theorem 1.1 above asserts that the first two lines 

in the matrix of coefficients akl of the defining polynomial Q(z, -2) determine the 

quadrature data Aj, 7jk, as well as the polar part of the Schwarz function S(z) .  

Actually, there is more structure in the defining polynomial Q. Namely, there 
exists a linear transformation U: C d ~ C d with a cyclic vector ~ E C d for 

U* and with P(z)  as minimal and (up to a sign) characteristic polynomial, such 

that: 
(5) Q(z,-2) 

ip(z)l ~ - 1 -II(U* --2)-1r 

where the equality is understood in the sense of rational functions; see for details 

[Pl]. It is clear from the above discussion that both the polynomial Q(z,-2) or 
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the pair (U, ~) form complete invariants for the quadrature domain f~. Since the 

leading coefficient of Q(z, 5) is positive, f~ is in fact given, up to a finite set, by 

(6) f ~ = { z e C ; Q ( z , - z ) < o } = { z c C ; l l ( u * - - 2 ) - l ~ l l >  l}. 

In the other direction, Q(z, 5) is uniquely determined by f~ while (U, ~) is deter- 
mined only up to unitary equivalence. 

Similarly to Theorem 1.1 we have the following result. 

THEOREM 1.2 ([P1] Section 3): Let f~ be a quadrature domain. With the above 
notation we have 

(7) u(f) =  (f(u)5 O, 

for every analytic function f in fL Moreover, 

(8) S(z) = - ( (U - z)-l~, ~) - A(z), 

where A(z) is an analytic function in f~ (the same as in Theorem 1.1). 

Notation: Throughout this paper we keep generically unchanged the notation 
introduced in this section. That is, f~ is a bounded quadrature domain of order d 

and the quadrature data are Aj,Tjk, 1 _< j _< m,0 < k < m(j) - 1. The defining 
polynomial of f~ is Q(z,-~) with the coefficients aj~, 0 <_ j, k < d, Otdd = 1. The 

Schwarz function is S(z) with denominator P(z), and the linear data of f~ are 

(U, ~). In addition, we will consider the moments of the domain f~ 

= f zm-~ndA(z), amn J~ 

and the scalar products 

= u* o, 

where m, n are non-negative integers. 

2. From t h e  equat ion  of  a quadrature domain to its l inear data  

The aim of this section is to find explicit formulas for computing the integral of 
a polynomial in z and ~ on a quadrature domain f~ (against the area measure), 

knowing only the defining polynomial of the boundary of f~. 
Let us recall the basic exponential transformation which relates the finite ma- 

trix (C~jk)j,k=o ~ to the infinite matr ix  (amn)m,n=O~176 

(9) Q(z, ~______)) _ exp ( ~  ~ am~ ) 
I p ( z ) 1 2  " m , . = o  ' 
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which is valid for large values of Iz]; see for details [P2]. Thus, by taking a 

logarithm at the level of formal series, the moments a,~, can be determined from 

the defining polynomial Q(z,-2). In its turn, the pair of matrices (U, ~) can be 

used in simplifying the above computation: 

(10) Q(z,-5) oo (U,n~, U,m~) oo gm,~ 
ip(z)l 2 - 1 -  Z zm+l-2n+l = 1 -  y ~  zm+l-2n+l �9 

m , n = 0  ~ . ~ n = 0  

Therefore, a direct relation between the matrix of coefficients akt and the 

Gram matrix gm~ becomes possible. To simplify the following computation we 
d k put ak = 0/kd, 0 <_ k _< d, so that P(z )  = ~k=o  0/kz �9 Note that  0/4 -- 1 by a 

convention we have adopted in the previous section. 

We begin with a series of elementary computations: 

d k - 1  

P(z ) (U*  - - 2 ) -1 ~  : (P(z)  - P(U)*)(U* - -5)-1~ = - Z - b k ( Z  U*k-8-1~-2s). 
k = l  s=O 

Later we will return to a second possible form of the same polynomial (see formula 

(19) below). 

Accordingly we obtain 

[P(z)12II(U * - -2)-1~[]2 = 
d k - 1  l - 1  

E E Z-~0/'<u*k-s-l~'u*l-t-l~)zt-2s" 
k,l=l s=0 t=0  

A(0/)jk = 0/j~'k--0/jk (0 ~ j , k  < d -  1). 

Then we obtain 

r,s p,q 

If we fix s, t in the last formula and perform the other summations, we obtain by 

(5) the coefficient of zt-~ s in IP(z)l 2 - Q(z,-2). 

Let G = (gjk)j,k=O d-1 and let us also introduce the Hankel matrix 

0/1 0/2 0/3 . . .  1 
0/2 0/3 0/4 . . .  0 

H ( a ) =  0/3 0/4 0/5 . . .  0 
�9 . : �9 

0/4-1 1 0 . . .  0 
1 0 0 . . .  0 

and the matrix A(0/) of coefficients of the polynomial ]P(z)]2 _ Q(z,-2): 
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The above computation can be summarized in the following result. 

PROPOSITION 2.1: The Gram matrix G of the linear data (U,~) of  a quadra- 
ture domain can be obtained from the coemcients (ajk)j,k=o d of the defining 
polynomial by the formula 

(11) H(a)GH(a)* = A(a). 

Clearly Proposition 2.1 implies that the matrix A(a) is positive definite, since 

G is. Later on (Theorem 4.3) we shall see, conversely, that a matrix of the form 

A(a) being positive definite is not only necessary, but also sufficient, for the 

existence of linear data  (U, ~) related to A(a) as in (10) or (11). 

Finally, let us write the announced formula for the moments of a quadrature 

domain: 

oo Zm"b l-~ a'b l ( ~'~~176 (12) Z a~n zm+l-2 ~+lgmn '~ = - r  log 1 - ]. 
~D,~n=0 rr~n=0 

We remark that  the above transformation, from the matrix (gmn) to the matrix 

of moments (amn), is triangular in the sense that  a,~,, depends only on gkl where 

0 _< k _< m and 0 < 1 < n. A couple of examples of low order quadrature 

domains which illustrate the preceding formulas are included in the last section 

of the paper. 

Our next aim is to factor the Gram matrix G into the linear data (U, ~) and 

then to use them in another formula for the moments of the quadrature domain, 

this time the computations being carried only at the level of linear algebra (and 

avoiding non-linear operations such as the above logarithm). 

3. A n o n - c o m m u t a t i v e  cu b atu re  formula  

In this section we exploit the Helton-Howe trace formula in the construction of 

a cubature formula on quadrature domains. Traditionally, cubature formulas in 

one or several variables arise from the evaluation of functions at the zeroes of 

some families of orthogonal polynomials; see [ST], [Xu]. Below we approximate 

the integral of a (real analytic) function on a quadrature domain ~2 by its values 

on the matrix U and some bigger matrices constructed recurrently from U. An 

error formula is obtained, similar to the errors in the well studied one dimensional 

theory; see [ST] Chapter IV. 

Let ft be a quadrature domain of order d with the linear data (U, ~) on the 

Hilbert space K of dimension d. Let T be the unique irreducible hyponormal 

operator, acting on the Hilbert space H, K C H,  such that  [T*, T] = ~ | 
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and with principal function equal to the characteristic function of f~; see for 

details [P1], [P2]. We recall from [P1] that g is the linear span of the vectors 

{T*n~; n _> 0} and that U* = T* IK. 

For a polynomial p E C[z,~], 

p(z,~)= ~ eo~z"-~, 
a+~_<n 

we introduce the symmetrized operator valued functional calculus: 

fl 
(13) p~(T,T*)-- Z co~ /~ + 1 E T*'YT~T*fl-'r" 

a+ /~<n  7=0 

LEMMA 3.1: With the above notation we have 

(14) f ,  pdA = 7r(p~ (T, T*)~, ~). 

Proof: Indeed, for a monomial z'~2 m, the Helton-Howe trace formula (see for 

details [P2]) yields 

f 1 Tr[T,m+ITn,T ] ~-1 znhmdA 
Jn m ~- 1 

m m 

_ 1 T r E T , k [ T , T ] T , m _ k T , ~  = 1 E ( T , m _ k T n T , k ~ , ~ ) "  | 
m + l  m + l  

k=0 k=0 

The previous formula becomes effective as soon as we recall the block structure 

of the operator T. To be more precise, let us define recurrently 

Uo = u,  Ao 2 = ~ | ~ - [U0*, U0], 

and for k _> 0, 

Uk+l = Ak- lUkAk,  Ak+l 2 = Ak 2 - [Uk+l*, Uk+x]. 

We know from [P1], Theorem 4.2 that,  for all k > 0, Ak are positive matrices 

on the space K. Then the operator T is unitarily equivalent to an infinite block 

matrix with Uk on the diagonal, Ak under the diagonal and zero elsewhere. 

For a fixed positive integer n we denote by T~ the (n + 1) • (n + 1)-block 

truncation of T. More specifically 

Vo o 

Ao U1 
0 A1 

T~= 

0 0 
0 0 

0 . . .  0 0 
0 . . .  0 0 

u2 . . .  o o 

: " . .  : : 

0 . . .  U,~-I 0 

0 . . .  An-1 Un 
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For a polynomial p(z,-5) we denote by degz(p), deg~(p) the corresponding 

degrees in z and ~. 

THEOREM 3.2: Let ~ be a quadrature domain with associated hyponormal 
operator T and let p G C[z, ~]. Then 

(15) pdA = 7r(p (Tn, Tn )~, ~} 

whenever n >_ min(deg~(p), deg~(p)). 

Proof: Let Pn denote the orthogonal projection of the Hilbert space H onto 

the finite dimensional subspace Kn = K + T K  + . . .  + T'~K. Then we find the 

identities T,  = P n T P ,  and T*P,  = P , T * P ,  from the block structure of the 

matrix T. Moreover, Tkx = (P,~TPn)kx = Tnkx for every x G K and k <_ n. 

Let p(z, ~) be a polynomial satisfying deg z (p) _< n. For a typical monomial in 

p~(T, T*) we have 

(T*'~T'~T*~-'~ ~, ~) = {T*'Y pnT~PoT*~-'~ ~, ~) -- (Tn*'YT, ~,T,**f~-'Y ~, ~} , 

because a _< n. 

Similarly, assume instead that deg~(p) _< n. Then, in the above notation 

7 -< fl <- n, whence 

(T*'~TC~T*~-'r ~, ~) = (PoT*'r pnT"PoT*~-'Y ~, ~} = (T,~*'YTn"Tn*~-'r ~, ~). 

This completes the proof of Theorem 3.2. | 

Let us remark that  for analytic polynomials p(z), formula (15) reduces to the 

quadrature identity (7). In the spirit of some recent advances in multivariable 

cubature formulas (cf. [Xu]), relation (15) holds in particular for deg(p) < 2 n +  1. 

For an arbitrary polynomial p, the error in formula (15) depends only on the 

monomials in p of the form z ~  z with both a and ~ strictly larger than n, hence 

only on An+lp, where A is the Laplace operator. Actually we can make this 

statement more precise. 

For a disk D(O,p) centered at zero, of radius p and a polynomial p(z) = 
~a+fl<_N cc~ zc~fl we introduce the norm 

IIpHp-- ~ Ic-,~lP ~'+~. 
a+fl<N 

In virtue of Cauchy inequalities for functions of two variables, for every positive e, 

the preceding norm can be estimated from above by the uniform norm of p(z, w) 
for Iz[, [w[ < p + e. However, we do not make use of this estimate below. 
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PROPOSITION 3.3: Let f2 be a quadrature domain contained in the disk D(O, p) 
and let p(z, -5) be an arbitrary polynomial. 

Then for every positive integer n we have 

(16) [ r - l f p d A  - (p~(T,~, Tn*)(, ~)[ _< 
Area(f~) (p/2) 2"+2 

~r (n + 1)! 2 IIA~+lplI"" 

Proof." Since the domain f2 is contained in the disk D(0, p), the spectral radius 

of the operator T is less than or equal p. But for hyponormal operators this 

implies IIT[I ___ p; see [P2] and the references cited there. 

According to Lemma 3.1 we have to estimate 

T *  [((P~(T, T*) - P ~ ( ~ ,  , ))r162 

For a typical monomial in this expression we obtain 

I((T*~T~T*~-~ _ T *~T ~Tn*~-'r)~, ~)1 = 

](T*~(I-  pn)T~T*~-~LO I <_ tlTII~+~IIr ~ _ Area(~2) pC'+/~. 

Let p(z,-5) be as above, with coefficients c ~ .  Then 

An+lp 
4n+l -- on+l~n+lp 

: ~ ca~a/~(a - 1)(/~ - 1)- - - (a  - n)(/3 - r~)za-n-l-z I~-n-1. 
c,,/~>n 

On the other hand, 

I((p~(T, T*) - pll(T,~, T,~*))(, ()l 

=1 ~ /~+lCa~ ~-~(T,.r( I _  pn)T,~T,~_.r~,~)[ _< 11~112 ~ i~lp~+ ~ 
a,/~>n "~=0 a,/3>n 

< 11r e'~+2 4'~+11c~,1o~,8(o~ - 1)(,B - 1) . . .  (o~ - n)(,B - n)p ~ 
- 4 ~+1 ~ (n + 1)!(n + 1)! c~,fl>n 
--< Area(f~)(p/2) 2n+2 

7r (n + 1)! 2 IIA"+~PlI"" 

This completes the proof of Proposition 3.3. II 

Suppose that  f (z ,  ~) is an analytic function of two complex variables which is 

convergent in the polydisk D(0, p') x D(0, p'), where p' > p. Then, by restricting 

f to the diagonal, the norm Ilfllp is finite. This shows in particular that the 
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functional calculus fn(Tn, T 'n)  makes sense; and so does Proposition 3.3. Thus 

the quadrature formula (15) is exact for such functions which, in addition, are 

(n + 1)-polyharmonic when restricted to the diagonal. 

Unfortunately, for a general (n + 1)-polyharmonic function f ( z ,  ~) in a neigh- 

bourhood of ~,  or even in D(O, p~), f~(Tn,T~) does not necessarily make sense , 

because even though f ( z ,  ~) extends analytically to some neighbourhood of the 

diagonal it may happen that it does not extend to all of D(0, p~) • D(0, p'). 

Cf. IV], [KS]. 

4. A rational embedding of  linear data in to  p r o j e c t i v e  space  

The resolvent of the matrix associated to a quadrature domain of order d gives a 

canonical embedding into an affine, or projective, complex space of dimension d. 

This embedding will prove to be functorial with respect to the reflections in the 

boundaries of the original quadrature domain and respectively the unit sphere in 
C d . 

The projective space of dimension n will be denoted by P~(C)  or 

simply Pn,  and projective (or homogeneous) coordinates in Pn are written like 

(Zo : zl : . . .  : zn), or sometimes (z0 : z) where z denotes the vector 

z = ( z l , . . . ,  z.). 

We always consider C n embedded in Pn by ( z l , . . . ,  z~) ~-~ (1 : zl : . . .  : zn) so 

that,  in particular, Pn is provided with a specific origin 0 = (1 : 0 : . . .  : 0) �9 pn ,  

and P1 also with a specific point of infinity, c~ = (0 : 1) �9 Px- 

In this section we treat a slightly more general situation than that encountered 

in the case of quadrature domains. Namely, let n be a positive integer, n > 1, let 

A be a linear transformation of C ~ with spectrum denoted a(A), and let ~ �9 C '~ 

be a nonzero vector. Let us denote 

(17) R(z) = (A - z ) - l~ ,  z �9 C \ a(A),  

the resolvent of A, localized at the vector ~. 

LEMMA 4.1: The map R: C \ a ( A )  ) C ~ is one to one and its range is a 

smooth complex curve. 

Proof'. Indeed, according to the resolvent equation we find 

R ( z ) - R ( w ) = ( z - w ) ( A - z ) - l ( A - w ) - l ~ ,  z , w � 9  
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Thus R(z )  - R ( w )  r 0 for z r w. For the point at infinity we have R(cc) = 0 r 

R(z ) ,  for z e C \ a (A) .  

Moreover, the same resolvent equation shows that 

R' ( z )  = (A - z ) - l R ( z )  ~ O, 

and similarly for the point at infinity we obtain 

d R ( 1 / t )  = - lim[t-2(A - t-1)-2~] = - ~  r 0. | 
t-+0 

Next we pass to projective spaces and complete the above curve. Let d be the 

largest number such that ~, A ~ , . . . ,  A d - I ~  are linearly independent. Then there 

is a monic polynomial P ( z )  = z d + Old-1 zd-1 -~- " ' "  ~- OL 0 satisfying 

P ( A ) ~  = 0 

and no such polynomial of lower degree. Set O~ d = 1 and define polynomials Tk(z)  

(0 < k < d) by 

(18) Tk(z)  = z k + a d - l Z  k-1 + ' "  + a d - k + l z  + ad-k .  

These are the polynomials appearing in the difference quotients q(z, w) of P(z) :  

q(z, w) - P ( w )  - P ( z )  _ E wk _ zk 
w - z  w - z  

k----O 

d k--1 d - 1  d 

k=O 5=0 5=0 k = j + l  

-- To(z)w d-1 + T l ( z ) w  d-2 + " "  + Td - l ( z ) .  

Note that  To(z) = 1, Td(z) = P(z ) .  

Since 

(19) P ( z ) ( A  - z ) - l ~  = - ( A  - z) -~ (P (A)  - P( z ) )~  = - q ( z ,  A)~ 

= - [ T o ( z ) A  d-1 + T I ( z ) A  d-2 + . . .  + Td-l(z)]~,  

R ( z )  is given, using projective coordinates in Pn,  by 

(20) R(z )  = (P (z ) :  P ( z ) ( A  - z ) - l ~ )  = (P(z) : - q ( z , A ) ~ )  

= (P(z) : - T o ( z ) A d - l ~  - T I ( z )Ad-2~  . . . . .  Td- l ( z )~) .  
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Recall that ~, A~,.. . ,Ad-I~ are linearly independent. Using them (with a 

minus sign) as a basis for the subspace spanned by the image of R we get R 

represented as 

R(z) = (Td(Z): Td- l (Z) : . . . :  To(z): 0: . . .  : 0). 

Here each Tk(z) has degree k exactly, hence a further triangular change of the 

homogeneous coordinates (giving a projective change of coordinates in Pn which 

preserves the embedding C n C Pn) brings R onto the form 

or, using homogeneuos coordinates also in P1, 

R ( z o :  = ( z f :  zoz -I : . . .  : ZoO: 0 : . . .  : 0).  

Thus, after a change of coordinates and considering R as a map into the pro- 

jective space Pd spanned by its image, R simply becomes an instance of the 

classical Veronese embedding (see [GH, p. 178f]), and the image curve R(P1) 

hence is projectively isomorphic to the rational normal curve of degree d (which 

by definition is the image of the Veronese embedding). 

In particular it follows that R is a smooth rational embedding of degree d and 

that its image spans a projective space of dimension d. It is well-known that in 

fact every rational map of degree d whose image spans a space of dimension d is 

projectively isomorphic to the Veronese embedding of degree d. Thus, what we 

did above is essentially that we performed the transformation explicitly in our 

case. This could also have been done using methods from realization theory; see 

e.g. [BGR]. 

By the above the first half of the following theorem is proved. 

THEOREM 4.2: Let A be a linear transformation of C ~ and let ~ be a non-zero 

vector of C n. Then the map R(z) = (A - z)- l~ extends to a rational embedding: 

R: P1 ~ pn. 

The range of R is contained in the projective completion of E = Vk~176 Ak~ and 

the values R(z) span E as a linear space. Moreover, the degree of R equals the 

dimension orE. 

Conversely, any rational map R: P1 -+ Pn such that the degree of R equals 

the dimension of the subspace spanned by its image and such that R(oo) = 0 

is given by (the projective completion of) R(z) = (A - z)-l~ for some linear 

transformation A of C" and some non-zero vector ~ in C ~. 
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Remark on terminology: By a rational map R: P1 ~ Pn in general we mean 

a map which in homogenous coordinates can be written 

R ( z 0 :  = (Po(Zl/Zo): Pl(Zl/Zo):. . .:  Pn(zdzo)) 

where P0, ..., Pn are polynomials, not all identically zero. Assuming (as we can) 

that the Pj have no common factor, the degree of the map is the highest occurring 

degree of the Pj. Then the polynomials have no common zero, hence R is well- 

defined at every point. By rational embedding we mean a rational map which is 

one-to-one and has nonvanishing derivative. 

Proof of Theorem 4.2: It only remains to prove the converse part. For this it is 

possible to invoke classical results on the Veronese embedding, but we prefer to 

argue directly. 

We may consider R as a map from P1 to the projective subspace spanned by 

its image, thus we may simply assume that R: P1 --+ Pd has degree d and that  

R(P1) spans Pd. 
Since R(cc) = 0, R has the form 

R ( z )  = ( P o ( z ) :  . . .  : Pd(z)) 

with degP0 = d, degPj _< d - 1 for 1 < j _< d, and we may assume that Po(z) is 

monic. Write 

Po(z) = z d + ~ a - l z  ~-1 + . . . + ~ a  

and define Tk(z) in terms of the ak as in (18). We would like to find A, ~ so that  

n(z )  = (P0(z) : Po(z)(A - z)-l~).  

Writing 

(21) ~o = ~ ,  ~1 =A~,  . . . ,  ~d-1 = A d - l ~ ,  

the requirements for A, ~ become (see (20)) that 

(22) Po(A)~ = 0 

holds along with 

(23) To(Z)~d_l'~-Tl(Z)~d-2"~-'"-~-Td-l(Z)~ 0 

=-[Pl(Z)el+P2(z)e2+...+Pd(z)ed]. 

Here ej denotes the j t h  unit vector. 

Since each Tj has degree j exactly, (23) can be solved for ~0,-. . ,~a-1, and 

since the right member of (23) by assumption spans C d as z runs through C, 
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~0, . . . ,  ~d-1 must actually be a basis for C d. Then we may simply take A to be 

the companion matrix of Po(z) relative to this basis, which by definition means 

that  Po(z) is the minimal polynomial of A, in particular that (22) holds, and 

that  A~j_I = ~j (1 _< j _< d - 1), i.e. (21), holds. 

Thus A, ~ have the required properties, finishing the proof of Theorem 4.2. 
| 

So far we have discussed the general relationship between rational embeddings 

and linear data (A, ~). Next we turn to the relationship between given polynomial 

data Q(z, -2) and linear data (A, ~) connected to the polynomial as in the case of 

quadrature domains, i.e., as in (5). However, we do not assume that  the data 

really come from a quadrature domain. For simplicity, we treat only the case 

that  d = n in the above notation, i.e., the case that the vector ~ in the linear 

data is cyclic for A. We shall also consider decompositions of the polynomial 

Q(z,-2) into sum of squares. 

Let 
d 

Q(z,-2) = ~ ajkzJ-~ k 
j,k=O 

be any self-adjoint polynomial, normalized so that add : 1, and set also 

d 

P(z) = E % zj" 
j=O 

Then 

(24) 

THEOREM 4.3: 

(a) 

(b) 

(c) 

d 

IP(z)[ u - Q(z,-2) = ~ (%dadk - %k)zJ-2 k. 
j,k=O 

The following conditions are equivalent: 
c~ \d- I The matrix A(a) = ( O l j d O l d k  - -  j k ) j , k _ ~  0 is positive definite. 

There exists a linear transformation A of C d with a cyclic vector ~ so that 
P(A) = 0 and 

(25) Q(z,~) _ 1 -  [[(A- z)-l~[[ 2. 
IP(z)l 2 

There exist polynomials Qk(z) of degree k (exactly), 0 <_ k < d, with the 

property 
d-1  

(26) Q(z,-2) -- IP(z)[  2 - IQk(z)l  2. 
k=O 
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In (c), the Qk are uniquely determined i f  the leading coefficients are required 

to be positive. 

Proof: (a)~(b) .  Assume that A(a) is positive definite. It is well-known that  

every positive definite matrix is the Gram matrix of some basis. Thus there exist 

linearly independent vectors vk E C d, 0 < k < d, satisfying 

(vj, vk) = a3~a~k - ajk. 

By this, relation (24) becomes 

(27) IP(z) l 2 - Q(z,-2) = IIU(z)l]2, 

where V(z )  d-1 �9 ---- ~ i = o  vjz3, a vector-valued polynomial. 

It follows that  R: P1 --+ Pd, defined in terms of homogeneous coordinates in 

Pd by R(z )  -- (P(z )  : V(z ) ) ,  is a rational map of degree d such that  the image 

of R spans Pd. Thus Theorem 4.2 provides linear data (A, 4) with 4 cyclic such 

that  

V(z )  = P ( z ) ( A  - z ) -14.  

Now assertion (b) follows. 

(b)~(c) .  To achieve the decomposition (26) we use again the polynomials 

(18) and note that  (19) still holds in the present context. We then only have to 
orthonormalize the vectors 4, A4, . . . , Ad-14: 

~0 = 114L1' 

A~ - (A4, eo)eo 

~1 = II . . . i l  ' 
A24 - (A24, el)ex - (A24, eo)eo 

~ = I I . . .  II ' 

etc. We get 

4 = 1141leo - -  Coeo (co  > 0 ) ,  

A4 = clel  + (A4, eo)eo (cl > 0), 

A24 = c2e2 + (A24, ~1)~1 + . . .  (~2 > 0), 

and so on, and relation (19) gives 

- P ( z ) ( A  - z ) -14  = To(z)Ad-14 + . . .  + Td - l ( z )4  
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= To(z)(Cd-led-1 + <Ad-I~, ed-2>ed-2 +'"  ") 

+Tl(z)(Cd-2ed-2 + <Ad-2~,ed-3)ed-3 +'"  ") + ' ' "  + Td-l(z)coeo = 

= Cd-ITo(Z)ed-I + (Cd-2TI(z)+ <Ad-l~, ed-2)To(z))ed-2 + ' ' "  

+(CoTd-I(Z) + (A~, eo>Td-2(z) + "  ")co 

= Qo(Z)ed-1 + Ql(z)ed-2 + " "  + Qd-l(z)eo, 

203 

where 

Qk(z) = Cd-l-k Tk(z) + O(zk-1). 

Hence Qk(z) is a polynomial of degree k with leading coefficient Cd-l-k > 0, and 

(26) now follows by inserting the above expression for P(z)(A - z ) - l~  into (25) 

and using that  the ej are orthonormal. 

(c)=~(a). If assertion (c) is assumed to be true, then the vector-valued 

polynomial 

Y(z) = (Qo(z), Q l ( z ) , . . . ,  Qa-l(z))  

satisfies (27). Expanding V(z) along increasing powers of z gives V(z) = 
d-1  ~-d=o vJ zj where the vj are linearly independent vectors. Then (27) and (24) 

show that  A(a) is the Gram matrix of the vj. Hence A(a) is positive definite, 

proving (a). 
It remains to prove the uniqueness of the decomposition (26). For this we ob- 

serve that there exists a simple algorithm of finding the polynomials Qk- Indeed, 

first observe that  the coefficient of -2d in Q(z,-2) is P(z). Hence the polynomial 

Fd-l(Z,-2) = IP(z)l 2 - Q(z,-2) has degree d -  1 in each variable. By assumption 

the coefficient ~,x of zd-l~ d-1 in Fd-1 is positive, so that 

Fd-l  (Z,-2) = "711/2-2d-lQd-l (Z) + O(zd-l,z--d-2) �9 

Therefore the polynomial Qd-I (z) is determined by Fd-~ (z,-2). 
Proceeding by descending recurrence in k (k < d -  1) we are led to the 

polynomial 

Fk(Z,-2) = Fk+l(z,-2) -IQk+~(z)l 2 

which has as leading term a positive constant 7k times zk-2 k. Then necessarily 

Fk(z , -2)  = 7k l /~-2kQk(z)  + O (z ~ , - 2k -1 ) .  

Thus Qk(z) is determined by Fk(z,-2). 

Fo(z,-2) = 70 = IQ0(z,-2)l  2 > 0. 

This finishes th e proof of Theorem 4.3. 

And so on until we end by setting 

| 
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By sections 1 and 2, all of the above discussions apply to quadrature domains. 

Notice that  the ~ in, e.g., the right member of (5) can be replaced by z by just 

conjugating the coefficients of U* and ~. Alternatively, one may use the U* and 

belonging to the conjugate domain f~* = {3 E C; z E 12}, which is a quadrature 

domain whenever f~ is. Then (5) is really on the form as it appears in (b) of 

Theorem 4.3. Thus, in view of (6) we have, for example: 

COROLLARY 4.4: A quadrature domain of order d is rationally isomorphic to the 

intersection of the rational normal curve of degree d in P d and the complement 
of a real affine ball. 

Also, by Theorem 4.3 we get 

COROLLARY 4.5: The equation for the boundary of a quadrature domain of order 
d can be written uniquely on the form 

d-1  

IQj(z)l  2 = IP(z) IL 
j=O 

where each Qj is a polynomial of degree j with positive leading coefficient and 
where P is the monic polynomial of degree d which vanishes (with the right 

multiplicities) at the quadrature nodes. 

In addition to the statements in the corollary we remark that the leading 

coefficient of Qd-l(Z) is 

co = [l~[[ = (Area(f~) ~ x/2 
k 71" / 

The quadrature data of t2 (i.e., the nodes and the weights) are determined by 

the knowledge of the rational function (4). By comparing 

Q(z,~) = Ip(z)l 2 - IQd_x(z)l 2 + O(zd-2 ,~  -2) 

with the middle term in (4), and by considering the behaviour at infinity of these 

functions, we find that the rational function (4) coincides with 

coQd-l(z) 
P(z) 

Therefore the quadrature data of ~ are in a natural bijection with the pair of 

polynomials P(z),Qa-l(Z). The other polynomials Qd-2(z), . . . ,Qo(z) deter- 

mine the domain f~ (via its defining function) and they depend on ( d -  1) 2 real 

parameters; see also [G1], Theorem 10. 
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In the particular case d -- 2 we have deg(P(z)) = 2 and 

Q(z,~) = IP(z)[ 2 - [az+b[ 2 -  c, 

205 

where a, c > 0 and b C C. Examples 6.1 and 6.2 below treat such cases. 

As an application of Theorem 4.3 we discuss the structure of the exponential 

transform: 

E a ( z , ~ ) = e x p  ( ~ - - z - ~ - ~ ) '  Izl'lwl >> 0' 

of a quadrature domain f] which possesses rotational symmetries. In the above 

notation, for large values of [z I we have, by (9), 

- E k = 0  IQ (z)l 2 E ~ ( z , ~ )  = [P(z)12 a-1 
[P(z)l 2 

PROPOSITION 4.6: Let f~ be a quadrature domain and let ~ be a primitive root 

of unity, of order n. Assume that f~ = e l l  

Then for all z e C, ]P(ez)l = [P(z)l and [Qk(ez)l = [Qk(z)l , 0 < k < d - 1. 

Proof'. From the very definition of the exponential transform, it follows by the 

change of variables ~ ~ e-1r that En(z,@) = E~(ez, e-l@). In virtue of the 

uniqueness of the decomposition (26) above, the e-rotational symmetry of the 

functions IPI and IQkl follows. | 

If a monic polynomial Q satisfies IQ(z)l = IQ(ez)l, then Q(z) is a product of a 

factor z "~, for some m >_ 0, and factors like (z '~ - an), a ~ 0. This remark leads 

to the following result, noted also in [G2]. 

COROLLARY 4.7: Let f~ be a quadrature domain of order d and let e be a prim- 

itive root of unity, of order d, so that f~ = e l l  

Then there exists a complex number a ~ O, so that the nodes off~ are eka, 0 _< 

k <_ d -  1, and the defining equation of Of~ has the form 

d--1  

k----O 

where ck > O, 0 < k < d - 1 .  

Proof: The case d = 1 leads to the defining equation Iz - al 2 = c, hence f~ is a 

disk. 
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Assume that  d > 1. By degree reasons, it is clear that IQk(z ) l  = cklzkl 2, for 

all 0 < k < d - 1. By Theorem 4.3, the constants Ck must be positive. 

For the leading polynomial P(z),  of degree d, there are two possibilities. Either 

P(z) = z d - a d, with a # 0, or P(z) = z d. The latter case is excluded, because 

f~ would be defined by a polynomial in Izl 2, hence it would be a union of annuli, 

which is not a quadrature domain. | 

5. R a t i o n a l  e m b e d d i n g  o f  Schwarz  re f lec t ions  in to  p r o j e c t i v e  space  

The main issue in this section is to give a geometric version in Pn  of the 

Schwarzian reflection (the antianalytic reflection) in the boundary of a quadra- 

ture domain. In particular this will give a criterion which complements Theorems 

4.2 and 4.3 and ensures that the domain (or open set) defined in terms of general 

data such as R(z), (A, ~) or Q(z,-2) is really a quadrature domain. 

We start  from a situation as in Section 4. Let 

R: P1 --+ Pn 

be a rational embedding of some degree d and normalized so that R(oo) = 0 in 

terms of given embeddings C C P1, C n C P1. Let k denote the dimension of 

the linear span of the image R(P1). It is easy to see that necessarily k <_ d. In 

case k = d we know by Theorem 4.2 that R is of the form R(z) = (A - z ) - l~  for 

some A: C n ~ C n, 0 # ~ E (Y*, but for the moment we do not assume that. In 

analogy with the case of quadrature domains we define the open set: 

(28) f~ -- {z �9 O; IIR(z)ll > 1}. 

We first remark that the singular points a in the boundary of fl are given by 

the equation {R'(a),R(a)) = 0. Here we know that R'(a) # 0 since R is an 

embedding. On the other hand, the Hessian H(a) at a of the defining equation 

I IR(z ) l l  2 = 1 is 

H(a) = ( (R'(a),R'(a)) 
(R(a),R"(a)> 

In particular rankH(a)  > 1, which shows 

a singular double point of 0fl. In the case 

the boundary of a quadrature domain fl it 

tangency point, and in this case rank H(a) 
Now let 

C = R(P1) 

<R"(a),R(a)> ) 
<R'(a),R'(a)> " 

that a is either an isolated point or 

of a non-isolated singular point a on 

is known that a is a cusp or a double 

= 1; see [G1]. 

C Pn 
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be the image curve of R and let Bn = {z E C~; [[zl] < 1} denote the affine unit 

ball, which we also consider as a subset of Pn. Set also 

C + = C ' - B ~ ,  C _ = C M B ~ .  

Thus, by (28), Ft = R-I(C+) = R- I (P~  \ B-~). 

That the map R, or curve C, has degree d means that C meets any generic 

hyperplane L C Pn in exactly d points. Given any point a E C we may take this 

hyperplane to be 

L - -  La = {z e P~;(z,a> = 1}. 

(The scalar product is written in the fixed affine chart z = (1 : z).) Then we 

obtain a multivalued (1 to d) reflection map J: C --+ C, namely defined by 

J: a ~-~ La f-I C, a E C. 

If a E C M 0Bn, then a E La Cl C. Thus C ('10Bn consists of fixed points for 

one branch of J.  Locally it is possible to select single-valued branches of J,  and 

these are antianalytic since one of the factors in the inner product defining La is 

conjugated. 

From the inequality 

(29) 1 = l(z,a>[ <_ [lz][[la[I 

for z E La it follows that J(a) C C+ if a E C_. Moreover, by considering the 

equality case we find that J(a) \ {a}  C C+ if a E C N 0Bn. 

Pulling J back to P1 via R gives a multivalued reflection map S : P1 -+ P1 

defined by R o S = J o R or, equivalently, 

(30) (n(z) ,  R(S(z)))  = 1 

Its single-valued branches S l ( z ) , . . . , Su (z )  

previous considerations we get 

(z E P1). 

are antianalytic, and from the 

PROPOSITION 5.1: The multivalued reflection z ~-~ (Sj(z))j=l d satisfies, for an 

appropriate numbering of the branches: 

(a) I f  z E P1 \ ~ then S j (z )  E f t  for 1 <_ j <_ d. 

(b) If  z E OFt then S l ( z )  = z and S--j(z) c Ft for 2 <_ j <_ d. 

From (b) of the proposition it is clear that the branch of S called $1 is identical 

with the conjugate of the Schwarz function S(z) of 0Ft; see (2). (A local Schwarz 

function, satisfying (2), exists whenever OFt is analytic, something which is cer- 

tainly satisfied in the present context when 0Ft = R-I (0Bn) . )  Recall now the 
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characterization [AS], [D] of (bounded) quadrature domains, saying that these 

are exactly those domains ~ for which there is a Schwarz function of 0f~ which is 

meromorphic in all f~. From this we obtain the following criterion for the domain 

(or open set) (28) to be a quadrature domain. 

THEOREM 5.2: Let ~ be defined by (28) in terms of a rational embedding 

R: P1 ~ Pn satisfying R(c~) = O. Then the following conditions are equiva- 

lent: 

(a) 
(b) 

(c) 

is a quadrature domain, or a finite disjoint union of such domains. 

There exists a single-valued antianalytic selection in all f] of the branch $1 

of-S. 

There exists a single-valued antianalytic selection Jx: C+ -+ C of that 

branch of J: C ~ C which has C n OBn as fixed points. 

Remark: The assumption R(oc) = 0 in the theorem is almost superfluous. The 

only significance of it is that it together with definition (28) prevents that  oo E ~, 

i.e., that gt is unbounded. For unbounded quadrature domains, in particular 

those which are dense in C, some new phenomena appear which will not be 

discussed in this paper. We refer to [Sa] for a complete analysis and classification 

of unbounded quadrature domains. 

Certainly, Theorem 5.2 is merely a translation of a by now classical character- 

ization ([AS], [D]) of quadrature domains. The main point for us is that the new 

condition (c) is a purely geometric statement whereas the classical characteriza- 

tion (essentially (b)) is stated in terms of function theoretic quantities. 

There are also other ways to inject quadrature domains into projective spaces 

so that  the Schwarzian reflection becomes a geometric object. Perhaps the most 

natural way is via the injection z ~ (z, S(z)) off~ into the completion in P2 of the 

algebraic curve F = {(z, w) E C2; Q(z, w) = 0}. On F the Schwarzian reflection 

simply becomes (z, w) ~ (~, 3). A slight drawback with this realization is that  in 

most cases ~ is not really embedded in P2 because F almost always has singular 

points (self-intersection etc.). See [G2] for some details concerning this. On the 

other hand, the reflection map is single-valued. 

Returning now to our embedding R, a natural question is: if ~ in (28) happens 

to be a quadrature domain, must then the given embedding R agree with the 

conjugate Ra of the "canonical" embedding z -+ (U* - ~)-1~ given in terms of 

some linear data (U, ~) of f~? Since the linear data are determined only up to 

unitary equivalence we cannot expect R and Ra to really agree. However~ the 



Vol. 119, 2000 LINEAR ANALYSIS OF QUADRATURE DOMAINS 209 

following theorem shows that under some (necessary) degree restrictions, R and 

Ra are as similar as they can possibly be. 

THEOREM 5.3: Let R: P1 ~ Pn be a rational embedding of degree k such 

that R(oo) = 0 and such that f~ = R - I ( P n  "-Bn) is a quadrature domain of 

order d. Then k >_ d. I f  k = d then, with Rn as above, there exists an isometric 

embedding i: Pd ~ P~ with the property that R = i o Rn. 

Remark: The conclusion may also be stated along the lines of Theorem 4.2, 

namely as saying that  R necessarily is of the form R(z) : (A - z ) - l (  for some 

linear transformation A of C n and some non-zero vector ( in C ~. The assumption 

that f~ is a quadrature domain of order equal to k then replaces the assumption 

in Theorem 4.2 that the image of R should span a space of dimension k. 

Proof of Theorem 5.3: The Schwarzian reflection for a quadrature domain of 

order d has exactly d branches when extended as a multivalued map to all P1. 

Thus the reflection maps S and J in Theorem 5.2 must have at least d branches 

if the equivalent conditions are satisfied, hence the degree k of R must be at least 

d, proving the first assertion of the theorem. 

Next assume k = d and write 

R(z)  : ( P 0 ( z ) :  P l ( Z ) :  . . .  : P, ( z ) )  

where deg P0 = d > deg Pj, 1 < j <_ n, and Po is normalized to be monic. Let 

Q(z,-5) be the normalized polynomial (1) of 0fl and let S(z) be the Schwarz 

function of 0f~. Since necessarily R(Of~) C 0Bn we have 

po(z)Po( S(z)  ) - p (z)Pj( S(z)  ) : o, 
j : l  

for z E 0f~, and therefore identically. 

On the other hand, Q(z, S(z)) = 0 and Q is the minimal polynomial of the 

algebraic function S(z). In view of normalizations and degree assumptions it 

follows that the two polynomials occurring above are identical: 

Po(z)Po(w) - P j ( z )P j (w)  : 

j----1 

for all z, w C C. 

Such a relation also holds for the "canonical" embedding Rn, which we write 

as Ra(z)  = (Qo(z) : Ql(z) : . . . :  Qd(z)) (degQ0 = d > degQj,  1 _< j <_ d, Q0 
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monic). Thus 

n d 

Po(z)Po(w) - E Pj(z)Pj(w) = Qo(z)Qo(w) - E Qj(z)Qj(w) 
j = l  j = l  

identically. It follows that Po(z) = Qo(z) (since these are the coefficients of w --d) 

and that  R and Ra are isometrically related: 

<R(z),R(w)l = <R~(z),R~(w)l (z,w e C). 

Since the range of R~ spans the vector space C d, there is a uniquely defined 

isometry V: C d > C n, such that V(R~(z)) = R(z) ,z  e C. At the level of 

projective spaces V induces a linear embedding i: Pd ) P,~ and R = i o Ra,  as 

desired. This finishes the proof of Theorem 5.3. The remark after the theorem 

follows immediately from Theorem 4.2, since by the above isometry the range of 

R spans a space of dimension d. | 

The following example shows that the case k > d in the theorem really 

may occur, and that  the conclusion need not hold then. Take the embedding 

R: P1 > P2 given in the standard charts of coordinates by the formula 

1 1 ) 
21Y2z ' 21/2z 2 �9 

Then the degree of R is two and R - I ( P 2  \ B2) is the unit disk, a quadrature 

domain of order one. 

We next specialize to simply connected quadrature domains. It is well-known 

[AS] that the (bounded) simply connected quadrature domains are exactly the 

conformal images of the unit disc B1 under rational functions, univalent in B1 

and with the poles off B1. The order of the quadrature domain equals the degree 

of the rational function, i.e., the number of times it attains (in P1) almost every 

value (see for instance [AS]). 

Thus let f~ = r with r rational as above. Let d be the order of ~ as a 

quadrature domain and let R: P1 ~ Pn be a rational embedding of degree d such 

that R(oc) = 0 and so that  D and R are related by (28), and set C = R(P1).  

Then the composed map 

r = R o r  -->Pn 

has degree d 2 and maps B1 via ~ onto C+ = C \ Bn. Clearly, r maps every pole 

of r to 0 E pn.  

As we saw above, when the multivalued reflection J in C was pulled back via R 

to P I  we got the multivalued reflection S in PI ,  of which the (conjugate of the) 
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Schwarz function is one branch. If we pull this reflection back one step further, 

via r we get the usual single-valued reflection map ( ~ 1 / (  in 0Bi .  In fact, 

by (30) we have for the Schwarz function S(z) that (R(z), R(S(z)))  = 1, z e ~. 

Since S(r = r for I~1 = 1 and therefore identically, the rational map 

r(() = R(r satisfies the duality relation: 

(31) <r(r = 1, 

identically on P i ,  proving the claim. 

Thus, in some extended sense, the rational map r is commuting with the 

reflections in the boundaries of the unit balls of C and respectively C d. 

Finally, taking degrees into account we can prove an analogue of Theorem 5.3 

for r: 

COROLLARY 5.4: Let r: P i  ~ Pn be a rational map, set C = r (P i )  and 

assume that 0 E C and that the restriction of r to Bi  is an isomorphism of Bi 

onto C+. 

Then C+ is rationally isomorphic to a simply connected quadrature domain 

f~ C C. Assume that deg(r) _< d 2, where d denotes the order o f~ .  Then 

r = i o R a o r  

with Ra as in Theorem 5.3, i: Pd ~ Pn an isometric embedding and r P1 --~ 

P i  a rational map of degree d, which is one to one on Bi .  

In particular the degree of r is d 2. 

Proof: Let R: P i  ~ Pn be a rational embedding which parametrizes, by 

Liiroth's theorem, the curve C. We may take it to satisfy R(cx~) = 0. Let d' be 

the degree of R, or, which is the same, the degree of C. 

We can define the antianalytic map J: C+ ~ C by the formula 

J(r(())  = r ( l / ( )  (( E B1). 

Since necessarily r(0B1) C OC+ C 0Bn we obtain 

<r(1/~),r(r = 1 (r E 0Bi).  

Hence, by analytic continuation, the same identity holds for ( 6 Bi .  Therefore 

g(r(())  6 nr(() AC (( 6 Bi) .  

We also have J(r(() )  = r(() for all ( 6 0Bi  and by assumption C+ is isomorphic 

to the unit disk, hence it is simply connected. 
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Set ~ = R - I ( C + ) .  Thus f~ is a simply connected quadrature domain of some 

order d, and necessarily d _< d ~ because the defining equation [JR(z)[[ > 1 of 12 has 

degree 2d ~ and may not be irreducible. We remark next that the map r = R -1 or  

is well defined, hence analytic, hence rational. By construction r is a conformal 

transformation of the unit disk B1 onto 12. Since the degree of the rational map 

r equals the order d of ~ we get 

d 2 _~ deg(r) -- deg(R) deg(r = dd' >_ d 2. 

Therefore d = d p and Theorem 5.3 can be applied to the rational embedding 

R. This proves the conclusion of Corollary 5.4. | 

6. Examples 

The complexity of computations of the basic objects attached to a quadrature 

domain increases very fast with the order. At least for order two quadrature 

domains such computations are possible, and they have appeared, from different 

perspectives, in [AS], [D], [G1], [Sa]. Below we show how the matrix U and the 

vector ~ enter into the picture of order two quadrature domains. 

6.1. THE LIMAQON. Let z = w 2 + bw, where [w[ < 1 and b _> 2. Then z 

describes a quadrature domain f~ of order 2, whose boundary has the equation 

Q(z,-z) = [z[ 4 - (2  + b2 ) [z [  2 - b2z - be~-t - 1 - b 2 - -  0;  

see for instance [DL], Section 5.1. 

The Schwarz function of ~ has a double pole at z = 0, whence the 2 x 2-matrix 

U is nilpotent. Moreover, we know that  

Therefore 

I z l 4 1 1 ( u  * - - I z l  4 - 

[[(U* + ~)~[I 2 = (2 + b2)[z[ 2 + b2z + b2-5 + b 2 - 1, 

or equivalently, [[~][2 = 2 + b 2, (U*~,~) = b 2 and [[U*~[[ 2 = b 2 - 1. 

Consequently the linear data of the quadrature domain f~ are 

g * =  o 
' f b 2 _ 2 ~ i / 2  �9 0 0 ~x-~ j  

This shows in particular that the pair (U, ~) is subject to some other restrictions 

than U 2 = 0 and ~ being a cyclic vector for U*. For an abstract version of these 

restrictions, see [P1]. 
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The rational embedding of the conjugated domain fl* can easily be computed 

from the definition (20): 

b 2 b 2 - 1 [ b 2 - 2 ~ 1/2 [ 
R ( I : z ) - -  ~ - z  2: z +  : 

(b 2 - 1 ) 1 / 2  (b2- - i~ /2  ~ - 1 )  z) .  

Notice that  in this situation fl* = f], therefore the rational conformal map 

r D ~ fl* is z = r = w 2 + bw. According to the previous computa- 

tions, the rational map r(w) = R(1 : w 2 + bw) satisfies the symmetry  condition 

(31) .  

6.2. T w o  DISTINCT NODES. (a) Suppose that  f~ is a quadrature domain with 

the quadrature distribution 

u( f )  = af(O) + b f(1) ,  

where we choose the constants a and b to be positive numbers. Then P(z) = 
z(z - 1) and 

~(~ - 1 ) (U*  - ~ ) - 1 {  = - V * ~  + ~ - z~, 

Therefore the equation of the boundary of f~ is 

Q ( z , ~ )  = I z ( z  - 1) l  2 - IIU*~ - 5 + =5112 

According to the quadrature relations (4) we obtain 

b 
[1~112 _ a + b, (U~ ,~ )  = - .  

7r 7r 

Let us denote Hu*~H 2 -- c. Then the defining polynomial becomes 

Q ( z , - z )  = I z ( z  - 1)12 - l r - t ( a l z  - 112 + b ( l z p  - 1 ) )  - c .  

The constant c actually depends on a and b via, for instance, the relation 

Area(Q) = a + b, or, whenever a = b, the fact that  Q(1/2 ,1 /2)  -- 0; see [G1], 

Corollary 10.1. 

We can choose an orthonormal basis with respect to which we have 

o) 
0 1 ' ~ =  7 

The matricial elements ~,/~, 7 are then subject to the relations 
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An inspection of the arguments shows that  the above system of equations has 

real solutions a,  ]~, ~/given by the formulas 

~2 = ( ~ c -  b) 2 ~2 = a-2  ~2 = ~(a + b ) c -  b 2 
lr(a + b)c  - b 2 '  r ( a  - b) + 1r2c ' r ( a  - b) + Ir2c" 

Let us remark that,  if a = b > r / 4 ,  the constant c is effectively computable, 

as mentioned earlier, and becomes 

1 a 
c = ~ + ~ .  

This again illustrates the special nature of the pair (U, 4). A simple computa- 

tion shows that  the corresponding canonical embedding of the domain ~2 = ~t* 

is 

R ( I :  z )  = ( z ( z  - 1):  ~(1 - z) - ~ :  ~z). 

We remark that  in both  of the above examples, the matrix U and the vector 

are uniquely determined, as soon as we require that  U is upper triangular. 

(b) In complete analogy, we can treat  the case of two nodes with equal weights 

as follows. 

Assume that  the nodes are fixed at +1. Hence P ( z )  = z 2 - 1. The defining 

equation of the quadrature domain gt of order two with these nodes is 

Q(z,-2) = (Iz + 112 - r 2 ) ( I z -  112- r 2) - c, 

where r is a positive constant and c > 0 is chosen so that  either gt is a union 

of two disjoint open disks (in which case c = 0), or Q(0, 0) = 0. For details see 

[G2]. A short computat ion yields 

Q(z , -2 )  =- z2-22 - 2rz-2 - z 2 - -52 -t- ~ ( r ) ,  

where 
( l - r 2 )  2, r < l ,  

~( r )  = 0, r > 1 

Equivalently, for the derivation of the formula of Q we can invoke Corollary 

4.7, which gives for 0 ~  the equation 

Iz 2 - 1L 2 = c l l zL  2 + co, 

with positive constants ck, k = 0, 1. Then we proceed as above. 

Exactly as in the" preceding two situations, the identification 

(32) L P ( z ) 1 2 ( 1  - II(U* - -2)-1~112) = Q(z,-2) 
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leads to (for example) the following simple linear data: 

0 v~r ) 

, , ~  �9 

We leave to the reader the verification of formula (32). 

6.3. DOMAINS CORRESPONDING TO A NILPOTENT MATRIX. To give a basic ex- 

ample for the class of domains discussed in Section 4 but which is not a quadrature 

domain, we consider the nilpotent matrix A and the cyclic vector ~: 

A = 
(010) (a) 

0 0 1 , ~ - -  b , 

0 0 0 c 

where a, b, c are complex numbers, c ~ 0. A simple computation shows that  

§ § 

Therefore the equation of the associated domain is 

]z[ 6 < [az 2 § b z §  c[ 2 + [bz 2 § czl 2 § Icz2[ 2. 

According to Proposition 5.1, the reflection in the boundary of this domain 

maps the exterior completely into its interior. 

The rational embedding associated to this example is 

R ( l : z ) - - ( - z  3 : a z  2 + bz § c : bz 2 § cz  : cz2) .  

Similarly, one can compute without difficulty the corresponding objects as- 

sociated to a nilpotent Jordan block and an arbitrary cyclic vector of it. For 

instance, the nilpotent n x n-Jordan block and the vector ~ = (0, 0 , . . . ,  0 , -1 )  

give precisely the Veronese embedding: 

R ( I :  z) --- (zn: 1 : z : . . .  : zn-2:  z~-l) .  

Compare the remarks preceding Theorem 4.2. 
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